Fatigue Fracture Characteristics of Ti6Al4V Subjected to Ultrasonic Nanocrystal Surface Modification

نویسندگان

  • Xiaojian Cao
  • Luopeng Xu
  • Xiaoli Xu
  • Qingyuan Wang
چکیده

The influence of ultrasonic nanocrystal surface modification (UNSM) on the fatigue fracture characteristics of Ti6Al4V was investigated. Two groups of specimens were separated due to different heat treatment conditions. Group one was stress-relief annealed at 650 ◦C, and group two was then treated with solid solution-aging. UNSM with the conditions of a static load of 25 N, vibration amplitude of 30 μm, and 36,000 strikes per unit produced about 40 μm surface severe plastic deformation (SPD) layers on both groups of specimens. UNSM improved the microhardness and the compressive residual stress. UNSM also helped achieve a neat surface, almost without changing the surface roughness. The fatigue strengths of these two groups were improved by 7% and 11.7%, respectively. After UNSM, fatigue cracks mainly initiated from the surface of the specimen before the fatigue life of 106 cycles, while they appeared at the internal compress deformed α-phase at the zone between the SPD layer and the core after the fatigue life of 106 cycles. The cracks usually extended along the deformation overflow bands and the process traces on the surface. Through the change of micro-dimples in the fatigue final rupture region, nanocrystals were achieved in the SPD layer. The crystal slip and the surface remodeling together influenced the energy field of crack evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of UNSM (ultrasonic nanocrystal surface modification) technology for increasing fatigue strength of Ti-6Al-4V ELI spine rod and for decreasing 15% of the spine rod diameter

The spine rod in the spinal fixation system should be tough enough to support the dynamic force and flexible also for flexible movement. 5.5 mm ~ 6 mm diameter spine rods made of Ti-6Al-4V ELI are common products. Two possibilities are studied. The one is that while keeping the flexibility unchanged (using 6mm diameter), how much the fatigue strength can be increased. The other is while the fle...

متن کامل

Fatigue Performance of Medical Ti6Al4V Alloy after Mechanical Surface Treatments

Mechanical surface treatments have a long history in traditional engineering disciplines, such as the automotive or aerospace industries. Today, they are widely applied to metal components to increase the mechanical performance of these. However, their application in the medical field is rather rare. The present study aims to compare the potential of relevant mechanical surface treatments on th...

متن کامل

Fatigue and corrosion fatigue properties of Ti-6Al-4V implant grade titanium alloy in Ringer solution

Nowadays modification of metallic biomaterials which are used as implants for bone and hard tissues replacement is considered as an important subject. In the current study, corrosion fatigue properties of Ti-6Al-4V alloy investigated via Rotating-Bending standard test method and then, the results compared with the fatigue properties of the specimens tested in the same conditions. Scanning elect...

متن کامل

Fatigue Behavior Optimization of the 16MnCr5 Steel Used in Machine Tool Spindle via Different Surface Treatments

Since the sub-axis of machine tool spindles subjected to fatigue loading, the effects of different surface heat treatments on fatigue behavior of 16MnCr5 steel have been investigated in the current work. After the test specimens were prepared from the steel, the surface heat treatments; carburizing, carbonitriding and a practical type of treatment involving the first nitriding then carburizing ...

متن کامل

Abrasive waterjet peening: a new method of surface preparation for metal orthopedic implants.

Abrasive waterjet (AWJ) peening is a new mechanical surface treatment process envisioned for use on metal orthopedic implants. The process utilizes an abrasive waterjet to simultaneously texture and work harden the surface of a metal substrate through controlled hydrodynamic erosion. In this study, a titanium alloy (Ti6Al4V) was subjected to AWJ peening over a range of parametric conditions. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018